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ABSTRACT

The purpose of this article is threefold:

(i) to present

in a unified fashion the theory of generalized gradients, whose
elements are at present scattered in various sources; (ii) to
give an account of the ways in which the theory has been
applied; (iii) to prove new% results concerning generalized
gradients of summation functionals, pomtw1se maxima, and
integral functionals on subspaces of L. These last-
mentioned formulas are obtained with an eye to future appli-
cations in the calculus of variations and optimal control (onz
such is given in the final section). Their proofs can be re-
garded as applications of the existing theory of subgradients
of convex functionals as developed by Rockafellar, Ioffe and

Levin, Valadier, and others.
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GENERALIZED GRADIENTS OF LIPSCHITZ FUNCTIONALS

Frank . ?Iiark(‘:

Ine parpose of this article is threefold: (i) to present in a unified
fashion the theory of generalized gradients, whose elements are at
present scattered in various sources (§1); (ii) to give an account of the
ways in which the theory has been applied (§2); (iii) to prove new results
concerning generalized gradients of summation functionals (§3), point-
wise maxima (§4) and integral functionals on subspaces of Lm(§5) .
These last-mentioned formulas are obtained with an eye to future ap-
plications in the calculus of variations and optimal control (one such is
given in §6). Their proofs can be regarded as applications of the exist-
ing theory of subgradients of convex functionals as develop=d by
Rockafellar, Ioffe and Levin, Veladier and others (see [19] [26] for

references).

!, Definition. Basic proparties
Let U be an open subset of a Banach space X, and let a func-
tion f: U -~ R be given. We shall suppose that f is Lipschitz on U ;

1. o. that for some constant K, for all U and u, in U, we have

G . |f(u1) . f(uz)l < K”ul-u?_” :
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Let us now fix a point x in U and any point v in X.

Definition 1. The generalized directional derivative of f at X in the

o - i
direction v, denoted f (x;v), is given by

fo(x;v) = lim sup [f(y+\v) - f(y)] /)

y—x

ALO

(Here of course y belongs to X and )\ to (0,%).)
Note that this definition does not presuppose the existence of
any limit, and that in view of (l.1), fo(x;v) is a finite number for all

v in X . The following observation is most important:

Lemma. The function v —- fo(x;v) is positively homogeneous and

subadditive, and satisfies

2x;v) < Kl v

Proof:  The homogeneity and the inequality are immediate consequences
of the definition. As for the subadditivity, let v and w in X be
given. Then

fo(x;v+w) = lim sup[f(y + \v+yg) - f(v)]/x

y—x
X10

IA

lim sup [f(y + \v+2w) - f(y +\w)]/\
y—>Xx
AL O

+ lim sup[f(y + \w) - f(y)]/\
b ey
AL O

= £%xv) + £9(x:w) . Q.E.D. ’

wd =




In view of the above lemma, it follows from the Hahn-Banach
theorem [12, p. 62] that there exists at least one linear functional

t: X - R satisfying
(1. 3) £°(x;v) > (v,0) forall v in X;

it is a further consequence of the lemma that ¢ is continuous. Thus
*
t belongs to X .
(As usual, X* denotes the (continuous) dual of X and (- , -)

%
is the duality pairing between X and X .)

Definition 2. The generalized gradient of f at x, denoted 9f(x),
is the (nonempty) set of all ¢ in X* satisfying (1. 3).

We now proceed to discuss some of the fundamental results in
the calculus of generalized gradients.
1. Nature of 9f [9, Proposition 1].

3f(x) is a nonempty convex subset of X»< . It is closed in the
strong topology of X* and bounded by K; thus 0f(x) is w*-compact.
2. fo(x;-) is the support function of 8f(x) [9, Proposition 1].

This means that for any v in X, we have

fo(x;v) =max{(v,t): L e f(x)} .

sk
3. 0f(-) is w -upper semicontinuous [9, Proposition 7].

I.e., if (,1e af(xi) where x, - x in X and 1;1—— ¢t in X*(w*) &

i
!
then € e 9f(x) .

4. fo( +3 ¢) 1is upper semicontinuous.

-3~




Let xi—ox and vi»v in X. For each i there exist hi in

X and xi in (0,1) such that thH B \i is less than 1/i and

O /
5 = A / ;
f (Xi'vi) < [f(xi »hi + \ivi) f(xi +hi)], )\i + 1/i

But the limit superior of the right side of this inequality (as i - «) is

5
easily seen to be no greater than % (x;v) . We obtain

lim sup .‘O(xi;vi) < £%(x;v) . Q.E. D,
i——f

5. 9(-f)(x) = -0f(x) .
This follows from the observation that (-f)o (x;v) = fo(x;-v) .
6. If f attains a local minimum or maximum at %, then 0 e 9f(x)
[9, Proposition 6].
7. The mean value property (G. Lebourg [20]).
If x and y are distinct points of X then there is a point z in
the open line segment between x and y such that

fly) - f(x) e (y-x, 9f(2))

(We assume here that all points in question lie in the set U upcn which
f is Lipschitz.)
8. 9f(x) when X =R" [4].
In this case, 9f(x) is the set co{lim Vf(xi); X, - x} . That is
i—= o0

(f being differentiable a.e. by Rademacher's theorem), we consider all

sequences xi converging to x such that f is differentiable at xi

and the indicated limit exists. The convex hull of these limits is 8f(x) .




This is equivalent to saying that 9f is the minimal upper-semicontinuous

convex-valued multifunction containing the derivative when it exists.

9. If f is convex, df(x) coincides with the subdifferentia’ in the
sense of convex analysis [9, Proposition 3]. In view of article 5, a

similar statement holds if f is concave.

10. If f admits a continuous Gateaux derivative Df, then 0f(x) =
{Df(x)} [9, Proposition 4].

When X = Rn, 9f(x) reduces to a singleton set {{} iff f is
strongly differentiable at x and Df(x) = { (f is said to be strongly
differentiable at x if

lim [f(y+v) - f(y) - Dfx)v)]/lvil =0 ;

y—~X

v—=0
Bourbaki [2] uses the term "strictement dérivable".) Lebourg [21,
Theorem 2.1] gives a similar result in the infinite dimensional case.
This shows that a differentiable function may have a generalized gradient

containing points other than the derivative. The latter is always con-

tained in 9of whenever it exists.

11. Generalized gradients of sums.
The inclusion 8(f+g) C 8f + 8g was established in [4]. A more
general study (including continuous sums and conditions for equality)

appears in §3.

12. Pointwise maxima.




One can relate the generalized gradient of x - max f(t, x) to the
t

generalized gradients of the functions x — f(t, x); see §4.

Definition 3. We shall say that f is regular at x if for every v in
X the usual one-sided directional derivative

f'(x;v) = lim [f(x +v) - f(x)]/\
AL O

exists, and satisfies f'(x;v) = f (x;v) . Convex functions and continu-

ously differentiable functions are reqular at every point (and certain

quasidifferentiable functions; see article 16).

13. Chain rule 1.
Let g map X to another Banach space Y, and suppose that g
is continuously Gateaux differentiable. Let h: Y- R be Lipschitz.

Then, if f: X - R is givenby f=heog, we have
(1.4) 9f(x) C Jdh(g(x)) ° Dg(x) .

Equality holds if either h (or -h) is regular at g(x) or Dg(x) is

surjective.

b3
Proof; Since the right side of (1.4) is convex and w - compact, it

suffices to prove that, for any v in X,

f(x;v) < max{/ Dg(x)v, L) : ¢ e Bh(g(x)) }

(see [9, Proposition 2]). Now any expression of the form

[(f(y +xv) - §(¥)] /2

is equal to (g(y+\v) - g(y), £)/\ for some ¢ e dh(z), where z is

B




in the interval between g(y) and g(y+ Av) (this is an application of

article 7). Further, by the mean value theorem,

[a(y +v) - g(y)]/\ = Dg(w)

for some w in the interval between y and y + A\v. As y converges
to x and X\ to 0 in the above, we can (by taking an appropriate sub-
sequence) assume that { converges (w*) to an element t"O Of 0h(g(x))
(in light of articles 1 and 3). Of course Dg(w) converges to Dg(x) .

We obtain

lim sup [f(y + Av) - f(y)]/x
y > x
AL 0

< ( Doy, L)

which yields the desired inequality.

Now suppose that h is regular at g(x) . Then by article 2

max {({ Dg(x)v, ¢) : ¢ e dh(g(x))}

h°(g(x); Dg(x)v) = h'(g(x); Dg(x)v)

lim [h(g(x) + ADg(x)v) - h(g(x))]/x
)

lim [heg(x+\v) - h o g(x)]/\
AL O

£ (x;v) < £2(x3v) = max{( v, L): { € Of(x)} .

This implies

(1. 5) 9h(g(x)) » Dg(x) C 3f(x) ,

as required.




Finally, suppose that Dg(x) is surjective. Then by the interior

mapping theorem, g maps every neighborhood of x to a neighborhood
of g(x) . We deduce

max {{ Dg(x)v, £} £ ¢ 8h(g(x))}

h°(g(x); Dg(x)v)

i

lim sup [h(z+ ADg(x)v) - h(z)]/r
z—+g(x)
AL O

lim sup[h(g(y) + A Dg(x)v) - h(a(y))]/x
y—=X
AL O

lim sup [h(g(y +1v)) - h(g(y)]/x
Y>Xx
)

fo(x;v)
We deduce (l. 5) as before. @ E- D

14. Chain rule II.
Let g: X—= R and h: R— R be Lipschitz. Then if f: X = R is
defined by f=h-°g , 7

af(x) C co[dh(g(x)) 9g(x)] .

Furthermore, if h is Cl, or if h (or -h) is regular at g(x) and g
is continuously Gateaux differentiable, the symbol "co" is supérfluous
and equality holds.

The proof is much like that of chain rule I, and is therefore omitted.

15. Partial generalized gradients.

«8e
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Let f: X XY — R be Lipschitz. Then it is natural to denote, for
each x, the generalized gradient of the function y — f(x,y) by
é)yf(x, v); similarly we define Uxf(x, v). There exists a function f '

(with X=Y=R) such that neither of the sets 9f(x,y), Bxf(x, Y) xayf(x, Y)

is contained in the other. We have, however, the following: if f (or -f)
is regular at (x,y) then

of(x,y) C axf(x, y) X ayf(X, Y) .

Proof: Let ((,¢) belong to 9f(x,y) . It suffices to prove that { be-
longs to axf(x, y), which in turn is equivalent to the condition that,

for all v,
€04, y3) = £, ¥iv) 2 (v, L)
But we have
£(%, viv) = £(%, %3, 0) = £°(x, 73, 0) > ( (v, 0), (L, 9))
={v,t) . Q.E.D.

A further result in this direction is the following: if X and Y are finite-
dimensional and f is convex as a function of x alone, then (g, ¢) ¢

of(x,y) implies (e Bxf(x, y) . This may be proven by means of article 8.

16. Quasidifferentiable functions (Pshenichnyi [25]).
A function f admitting one-sided directional derivatives f'(x;v)
in the usual sense is said to be quasi-differentiable if there is a convex
*

w -compact subset M(x) of X such that for each x, for every v

in X,
=9
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(1. 6) f'(x;v) = max{{v,¢): L e M(x)}

We shall prove the following: if f is quasi-differentiable and the
multifunction M is upper semicontinuous, then f is locally Lipschitz
and regular, and M(x) = 9f(x) (the upper semicontinuity is with respect

*
to the strong topology on X ).

Proof: Fix x and ¢ >0. Forall y near x, t near 0 and v in
B, we have M(y + tv) C M(X) + ¢ B* (where B, B* are the unit balls
in X, X)t< ). This implies that for all such y,t,v we have f'(y+tv;v)
< f'(x;v) + ¢ . If we fix any such y,v and define g(t) = f(x+tv) for
0<t<T (T independent of y and v), it follows that g has a uni-
formly bounded upper right Dini derivate, which is known to imply that

g is Lipschitz [17, (17.23)]. Thus we may write, forany 0< 1< T,

:
[fy+mv) - i) /== [ < gt
0

T

1 ;
e fo f'(y + tv;v)dt

< B(xv) e

It follows that f is Lipschitz in a neighborhood of x, and we deduce
as well fo(x;v) < f'(x;v) + ¢ . Since ¢ is arbitrary, we conclude that
£° and f coincide (i.e. f is regular). That 0f(x) and M(x) are

equal now follows immediately from (1. 6) and article 2. Q. E D

17. Evaluation functions.
Let @ be a Banach space of functions from a space T to a

«]l0=




Banach space X such that, that for a certaint in T, the mapping

¢ ~ o(t) from & to R is continuous. If f; X = R is a given Lipschitz
function, cefine F: ® - R by

Flg) = f(o(t))
Then F is Lipschitz, and for every element { of E)F(JJ) there exists

an element £, of 9f(e(t)) such that

(v, )y = { v(t), Qt) for all v in &

Proof: Since w(g) = ¢(t) is a continuous linear functional, it is Lipschitz,
and hence sois F. Wehave F=fom, and Dm(¢) = v . The result

now follows from chain rule I. @SESINT

2. Related work.

Generalized gradients were introduced in the author's thesis [3]
and in [4] for the case X = R™; the infinite-dimensional case was
broached in [9]. They have been used in applications to the calculus
of variations [5] [7] [11], optimal control [6] [10], flow-invariant sets
[1] [4], the inverse function theorem [8] and mathematical programming
[9]. Numerical algorithms employing generalized gradients have been
developed by A. A. Goldstein [14], A. Feuer [13] and R. Mifflin [22].
G. Lebourg [20] [21] obtained the mean value theorem of §l1 and used
generalized gradients as a tool to investigate generic differentiability
properties of locally Lipschitz functions on Banach spaces. Hiriart-
Urruty [18] applies the theory to mathematical programming, and

all«




B. S. Morduhovic [23] to control problems. L. Thibault [28] extends

property 8 of §l to separable Banach spaces by means of the Haar
derivative. In [24] B. Pourciau discusses the properties of generalized
Jacobians (the extension of generalized gradients to vector-valued
functions) introduced in [8] (see also Sweetser [27]).

Among the many notions that generalize the concept of the deriva-
tive, there are two (introduced subsequent to generalized gradients) that
are closely related to the present work. These are "derivate containers"
and "screens", defined by J. Warga [29] and H. Halkin [15] respectively.
It can be shown that when X = Rn, these concepts are more general than
that of generalized gradient. In infinite dirﬁensions however, these
concepts are not applicable to all locally Lipschitz functions (in con-
trast to generalized gradients) because of the fact that, not being in-
trinisically defined, they require that f be uniformly approximated by
continuously differentiable functions. As pointed out to us by J. Warga,
this is not always possible (an example is the norm on the space

c[o,1]).

3. Generalized gradients of summation functionals.

Let (T, 3, u) be a positive measure space, and let U be an
open subset of a Banach space X . We suppose given a function
f: TxU - R, and we assume that for some ke Ll(T, R) (the space
of integrable functions from T to R) we have, for all t in T and

upu, in U,

=l2=




I

(3.1) lf(t,ul) - f(t, uz)l <kl -u

2

Finally we suppose that for each x in U, t — f(t,x) is measurable,
and we define F: X = R as follows:
F(x) = [ f(t, %) w(dt) ,
T

whenever this integral is defined.

Theorem 1. Suppose that at least one of the following conditions is
satisfied:
(a) T is countable; or
(b) X 1is separable; or
(c) T is a separable metric space, p is a regular measure, and the
mapping t — axf(t, X) 1is upper semicontinuous (w *) for each x .

If F(x) is defined for some point x in U, then F is defined

and Lipschitz in a neighborhood of x, and

() OFx)C [ 8 (t,x)u(dt) ,
i

by which we mean that to every { in 0F(x) there corresponds a
mapping t = ¢(t) from T to Xt‘: such that t - (v, {(t)) belongs to

Ll('I‘, R) for every v in X,

(vyty = [ (v, t(t) p(dt)
iy

for every v in X, and

L(t) e a.<f(t, X) p-a.e.

-13-




If f(t,-) is reqular (see Definition 3, §l) for each t, then F is

regular and equality holds in () .

Proof: That F is defined and Lipschitz near x is an immediate con-
sequence of the hypotheses, in particular (3.1).
Let ¢ belong to 9F(x) . Then, for any v in X ,
o '
F7(x;v) = lim sup f [f(t, y+\v) - f(t, y)]/N  wp(dt)
Y= X 1t
AL O
Condition (3.1) allows us to invoke Fatou's Lemma to bring the lim sup
under the integral sign and deduce:
o o
(3.2) [ f(t,x9) wdt) > FU(xv) > (v, L),
T
(the last inequality being a consequence of article 2, §l). Let us define
?(t, v) = fo(t, x; v) . It follows that f is convex in v, and that, for
X

all t in T and v in X,

1£t,v)| < kt)

We claim that f is measurable as a function of t. If (a) holds this is
automatic, whereas if (c) holds it follows from the easily proven fact
that fi(t, X; v) is upper semicontinuous with respect to t (use §l,
article 2). It remains to consider case (b). Let {dn} be a countable

dense subset of X . It follows that fo(t, X;Vv) is equal to

lim sup [f(t,x +d_+ \v) - f(t,x +d_)]/\.
n n

d -0

n

AL 0

\ rational

«lda




But for each n and ) this last expression is measurable by hypothesis; it

follows that the "countable lim sup" defines a measurable function of

If we now define a convex continuous function F: X~ R via
Fov) = [ Bt v) p@y
T

then (3. 2) asserts that ¢ belongs to the subdifferential of ?‘ at 0.
We now apply [19, Theorem 1, p. 8] in cases (a) and (b), and [19,
Theorem 1, p. 13] in case (c), to deduce exactly the conclusion of the
theorem regarding ¢ (notice that Bg(t, 0) = ava(t, X;0) = Bx f(t, x) by
Definition 2).

Now let us suppose that f(t,+) is regular. From the dominated

convergence theorem it follows that

Fo(xv) > F'(xgv) = [ £ (t, %;v) p(dt)
T

o]
= [ f_(t,x;v) p(dt)
T X
(o]

= F (x;v) ,

the last inequality having been established earlier. This shows that

F is regular. Finally, let ¢ (= f {+,t(t)) u(dt)) be an element of the
gt
right side of (*). Then (since {(t) e 8Xf(t, X) p-a.e.)

Foxv) = [ £(t, %3v) p(dt)
g
> [ vyt wdt) = (v, 5
T

alBu




This implies that ¢ belongs to 9F(x) . Q.E. D,

4. Generalized gradients of pointwise maxima.

Let T be a sequentially compact topological space, and let
f: T XU - R satisfy

lf(t: ul) = f(t) uz)li K"ul - UZ ”

forallt in T and ul,u in U, where U is an open subset of X.

2

We suppose that f(-,x) is upper semicontinuous for every x in U,
and we set

F(x) = max {(t, x)
te T

It is easy to prove that F is Lipschitz on U .

Theorem 2. Suppose that at least one of the following holds:

(a) X 1is separable; or
(b) T is metrizable (in particular, if T is separable),
sk
and suppose that Bxf(t, x) 1is upper semicontinuous (w ) in (t,x) .

Then for any x in U ,

(*) 9F(x) € U{[ o f(t,x) p(dt): pe P[T(®)]} ,
1y

where T(x) is the (closed) set

{te T: F(x) = f(t,x)}
and P[T(x)] is the set of probability Radon measures supported on T(X) .
by this we mean that to every ¢ in 0F(x) there correspond an element
p of P[T(x)] and a mapping ¢(t) from T to X* such that for every v

in X, t- (v, {(t)) belongs to LI(T, R) (with respect to p ) and

-16 -




T

F is regular and equality holds in (%) .
Proof: = We begin by proving:

(4.1) Fo(x;v) < max fo(t, X;V)
te T(x)

0, we have

axf(t, zy)\) such that

[f(t, y+rv) = §(V)]/N = (v, & Y

YA

0

fO

x(to, %:V) .

al7a

(v,t) = [ (v, 50y pdt) .

Furthermore, if f(t,-) is regular for each t (see Definition 3), then

" O 2 A : -
Note first that fx(t,x;v) is upper semicontinuous and T(X) is compact,

so that the notation "max" is justified. For any y near x and A near

[F(y+iv) - FW]/N < [f(t, y+av) - f(9)]/N

forany t in T(y+A\v) . Further (§l, article 7), there is a point zy

in the interval between y and y+\v and a point z_,y)\ belonging to

If we now assume that we have a sequence of such (y, A) converging
to (x,0), we can pick a subsequence such that I,y)\ converges w
to a point t"O and the points t converge to some t It follows

that t  belongs to T(x), and that l[.,o belongs to 3xf(t0, X) . From

this argument we can conclude the validity of 4.1, since (v, go> <

Now let ¢ belong to 9F(x) . Then (4.1) implies




max ?(t,v)z (v,t) forall v ,
te T(x)

where ?(t, )= fi(t, X;V) . Because £ is upper semicontinuous in t

and finite convex in v, we can apply [19, Theorem 2, p. 33] if (a)

holds, or [19, Theorem 3, p. 34] if (b) holds, to conclude that { be-

longs to the subdifferential at 0 of the function v - max ?(t, v) and
te T(x)

hence has exactly the form indicated in the theorem (we use here the

fact that Bv f(t,0) = Bxf(t, x)).

Now let us suppose that each f(t,-) is regular, and let us set

F'(x;v) = lim inf [F(x+\v) - F(x)]/\
ALO

We certainly have F'(x;v) < Fo(x;v) . In order to prove that F'(x;v)
exists and equals Fo(x;v) (i.e. that F is regular) it suffices to prove
the opposite inequality.

To this end, note that for any X\ >0, for any t in T(x), we
have

[F(x+xv) - F(x)]/X\ > [£(t, x+Av) - f(t, x)/\ .
Taking the lim inf of both sides, we obtain
1) ) o
F'(x;v) > fx(t, X;V) = fx(t, x;V)
Since this is true for any t in T(x), we deduce

Fr(x;v) > max fo(t,xv) > Foxv)
te T(x)

in light of (4.1). This completes the proof that F is regular.

-18-




We now show that equality holds in (*¥). Let ¢ belong to the
right side of (*), with p and ((t) characterizing ¢ as described there.

Then, for any v in X,

(vty = [ (v, b)) w(dt)

(B

I £ (8, x;v) p(dt) = fT £ (t, %;v) p(dt)

n

lim {[ f(t, x+av) w(dt) - [ £(t, x) (@) }/x
x40 T T

< lim sup {f F(x+\v) p(dt) - f F(x) p(dt) }/n
AL O T it

= lim sup [F(x+\v) - F(x)]/x = FO(x;v)
AL O

Thus for any v in X we have

o

Pz > (v L)
i.e. t belongs to OdF(x) . @+ E. D
Remark. Important special cases in which the upper semicontinuity of
axf(t, x) and regularity of f(t,*) are present occur when f is continuous

in t and convex in x, or when f admits a (jointly) continuous derivative

D_f .
X

5. Integral functionals on subspaces of Lw(T, Xy .
In this section we suppose that (T,J, u) is a o-finite positive

measure space and X a separable Banach space. Lw(T, X) denotes the
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space of (measurable) essentially bounded functions ¢: T- X . We

suppose given a function f: T XU - R (where U is an open subset of
X) with the following property: for some ¢ >0, there is a function

k e Ll(T, R) such that for all t in T, for all ul,uz in an g -neighborhood

of U, we have

|f(t, ul) - f(t, u < k(t) “ul -4 ”

2)| 2

We assume that f is measurable as a function of t.

Finally, we assume that for at least one ¢ Lw(T, U) the integral

Flo) = [ f(t, @(t)) p(dt)
T

is defined (finitely). It follows that the integral is defined for all ¢ in
L:C(T, U), and that F is locally Lipschitz as a function from Lw(T, U)
to R.

Now let a closed subspace S of LOO(T, X) be given, and let us
consider F as a function from S to R (only the values of F on

s N L?(T, U) will be relevant).

Theorem 3. If F: S—+ R is as defined above, then for any point ¢ in

L(T,U) NS we have

$) oF(e) C [ 8 f(t, o(t) w(dt) ,
ooE

by which we mean the following: to every { in 9F(¢) there corresponds

3
a mapping t - ¢{(t) from T to X such that ¢(t) belongs to axf(t, o(t))

=20«




P—-——-——""m—w—‘

p-a.e. and such that, forall p in S, t - (B(t), L(t)) belongs to

LI(T, R) and

(B,L) = [ (Bt), L))
T

Furthermore, if for each t, f(t,-) is regular (see Definition 3), then

F is regular and equality holds in ( *).

Proof: Let ¢ belong to 9F(¢), and let @ be any element of §S.
Then for X\ small, ¢(t) + A\3(t) belongs to the ¢-neighborhood of U for
all t, and by Fatou's Lemma

J 120, o(t); B(D) () 2 F(e38) > (B, L)

T
If we define ?(t, X) = fz(t, o(t); x), then f is continuous and convex
in x and measurable in t (the latter fact follows just as it did in case
(b) of Theorem 1). Consequently f is a "normal convex integrand".

The inequality above says that ¢ belongs to the subdifferential

at 0 of the function (on S)

8~ [ F(t,p(t) p(@dt)
T

The requisites of [19, Theorem 2, p. 22] are present, so that we deduce
the existence of a mapping t — ¢(t) such that for every p in S,
t = { B(t), L(t)) belongs to Ll(T, R) and

(B, 0y = [ (B(t), L)) wdt) ,
il
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and such that

t(t) e of (t,0) u-a.e.

But af(t, 0) is equal to Bxf(t, ¢(t)) by §l, article 2. This completes
the proof of the first part.

Now suppose that f(t,+) is regular. If we set

F'(¢;B) = lim inf [F(p+)B) - F()] /X ,
AL O

we have (invoking Fatou's lemma)

Flo; 8) > F' (:8)

| v

[ £t o(t); () w(dt)
T

J 11 0(0); () k() > F(g;p)
T

It follows that F is reqular.

Now let ¢ belong to the right side of ( *), with representation

t(t) . Then

(B, L) = [ (B(t), L(t)) w(dt)

T

s '[I' fz(t, o(t); (L) p(dt)

J Bt e(0; Bt)) pidt) = FPresp)
ik

the last equality being a consequence of the preceding calculations.

This implies that ¢ belongs to OF(¢) . Q. B Ds
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6. A variational problem with state constraints.

Let f. Rn X Rn -+ R and gqg: Rn —- R be given locally Lipschitz

n . .
functions, and let two points XO’ xl of R be specified. Denoting

the set of absolutely continuous functions x: [0,1] -~ R" whose derivatives
belong to LT([O, 1], Rn) by A, we consider the following problem in the

calculus of variations:

1
minimizef f(x(t), x(t))dt over A,

0
subject to
(6.1) x(0) = XO, x(1) = Xl
and
(6.2) g(z(t)) <0, te [0,1] .

As usual, we call weak local minimum any z in A which solves
the above problem relative to the elements x of A whose derivative

% lies in some uniform neighborhood of Zz

Theorem 4. Let z provide a weak local minimum for the problem de-
scribed above, and suppose that whenever g(z(t)) = 0, we have
0 & 8g(z(t)) . Then there exist an absolutely continuous function
p: [0,1] - Rn, a (nonnegative) Radon measure m supported on the set
{t: g(z(t)) = 0}, and a measurable function y: [0,1] ~ R" satisfying

L7
y(t) € 9g(z(t)) m-a.e., such that (we denote f by f )
(0, t) 0

-l Yo




t
(6. 3) (b(v), p(t) + [ y(s) mds)) e df(z(t), z(1) a.e.
0

Remark. One can always reduce the case of multiple constraints

gi(x(t)) <0 (i=12,...n) to the one treated ahove by defining

g(z) = max gi(x) . If each g1 is locally Lipschitz, then so is g
I<i<n 1 n
Furthermore, in the case when each gi is C°, the condition-that 0
not belong to 9g(z(t)) is equivalent (in light of The_o.re'r;h 1) to the re-
quirement that 0 not belong to the convex hul’l'of the points Dgl(z(t))

(1=1,2,...n). This is significantly weaker than the usual requirement

that the vectors Dgl(z(t)) be ‘linearly independent.

Proof: Let X = R" X'Rn, and define S to be the following closed
fo o}
subspace of L ([0,1],X) :

t
S = {(x,y) e C([0,1], Rn) XLm([O, i Rn): x(t) = f y(s)ds a.e.}
0

We define F and G, functions from S to R, via

1
F(x,v) = [ £z(t) + x(t), 2(t) + y(t))dt ,
0

G(x,y) = max g(z(t) + x(t)) ,
o<t<l

and we define Hi:S-oR =Nz e n) by,

H (x,v) = x; (1)
w 1

(the ith coordinate of the vector x(l)) .
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It follows that the element (0,0) of S is a local minimum on § for
F(x,y) subject to G(x,y) <0 and Hi(x,y) =0 ({d=1,2,...8). Since
all these functionals are Lipschitz, we may apply (9, Theorem 1] to
conclude that there exist numbers «,p, 6i (i=1,2,...n) not all zero
such that

a >0, ‘320: pG(0,0) =0 ,

and such that
(6.4) 0 ¢ @dF(0,0) + BIG(0,0) + ) 6, 9H (0, 0)
The generalized gradient 9F is described by Theorem 3 (§5) . In the

case of G, note that

G(x,v) = max gt m(X,¥) ,
0_<_t_<_1

where m: S = C([0,1], Rn) is the "projection”
m™X,Y) = X ,
and where §: [0,1] x C([0,1], Rn) - R is the "evaluation"
g (t, x) = g(x(t))

We invoke §l articles 13, 17 and §3 Theorem 2 to deduce that for any
t in 90G(0, 0) there exists a probability Radon measure p supported

on the set

{t: G(0,0) = g(t, () }

«25=




and  y(t) belonging to 9g(z(t)) p-a.e. such that, for all (x,y) in

s,

C(%9), 8) = [ (x(t), y(t) k(dt)
(0,1]

After a simpler study of 9H, we find from (6. 4) that for certain

integrable functions gl’ (,2 such that

(gl(t), {.,Z(t)) e af(z(t), z(t)) a.e. ,

for certain p and y as described above, and for the vector v= [61, seagt]
n

, n
in R, we have

1
(6.5) o[ {L,(1) - x(t) + L, (1) - k(t) Jdt +p [ () x(®) p(dt) +v- x(1) = 0
0 (o, 1]

whenever x: [0,1] - R" is absolutely continuous and x(0) = O .
A standard argument from the calculus of variations (see [16, p. 50])
obtains the following from (6. 5):
t t

(6. 6) oL, (t) = cta [ L (s)ds +p [ ¥(s) pds) a.e. ,
0 0

y n
for some constant ¢ in R

Suppose that a is 0. It follows from (6.5) that B is strictly
positive (for @ = 0 would imply v # 0), and hence from (6. 6) that
ft y(s) p(ds) is constant. Also, since g >0 we have G(0,0) =0,
w?’nich implies that on the support of u, y is never 0. This is a con-

tradiction, so that we can assume a =1. If we set
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t
m=pp, pit)=c *yf g”s)ds .
0

the conclusion of the theorem is seen to follow (that the support of m
lies in the stated set is immediate if G(0,0) = 0; but if G(0,0) < 0

then =0 and m= 0). Q. BT,

o




(5]

(6]

(8]

[9]

REFERENCES

J. P. Aubin, A. Cellina, J. Nohel, Monotone trajectories of
multivalued dynamical systems, to appear.

N. Bourbaki, Variétés Différentielles et Analytiques, Hermann,

Paris.
F. H. Clarke, Necessary conditions for nonsmooth problems in
optimal control and the calculus of variations, thesis, University
of Washington 1973 (Supervisor: R. T. Rockafellar).

, Generalized gradients and applications, Trans.

Amer. Math. Soc., 205(1975), 247-262.

, The Euler-Lagrange differential inclusion, ]J.

Differential Equations, 19(1975), 80-90.

, Necessary conditions for a general control problem,

in Calculus of Variations and Control Theory, (edited by D. L.

Russell), Mathematics Research Center (University of Wisconsin-
Madison) Pub. No. 36, Academic Press, N.Y. (1976).

The generalized problem of Bolza, SIAM ]J. Control

Optimization, 14(1976), 682-699.

, On the inverse function theorem, Pacific J. Math.,

62(1976).
A new approach to Lagrange multipliers, Math.

’

Operations Research, 1(1976), 165-174.

«28=




[16]
(7]

(18]
(19]

F. H. Clarke, The maximum principle under minimal hypotheses,

SIAM J. Control Optimization, 14(1976).

, Inequality constraints in the calculus cf variations,

to appear.

N. Dunford, J. T. Schwartz, Linear Operators (Part I), Wiley

Interscience, N.Y. (1957).

A. Feuer, Minimizing well-behaved functions, in Proceedings of
the Twelfth Annual Allerton Conference on Circuit and System
Theory, (Illinois) (1974).

A. A. Goldstein, Optimization of Lipschitz continuous functions,
to appear.

H. Halkin, Mathematical programming without differentiability,

in Calculus of Variations and Control Theory, (Edited by D. L.

Russell), Mathematics Research Center (University of Wisconsin-
Madison) Pub. No. 36, Academic Press, N.Y. (1976).

M. R. Hestenes, Calculus of Variations and Optimal Control

Theory, Wiley, N.Y. (1966).

E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer-

Verlag, N.Y. (1965).
J. B. Hiriart-Urruty, thesis, Université de Clermont (1976).
A. D. Ioffe, V. L. Levin, Subdifferentials of convex functions,

Trans. Moscow Math. Soc., 26(1972), 1-72 (English translation).

29

NERORPRE—— DT, i ,.,w‘“‘__‘



[20] G. Lebourg, Comptes Rendus de 1'Académie des Sciences de

: Paris, November 10, 1975.

[21] , Generic smoothness properties of locally Lipschitzian
real-valued functions defined on open subsets of infinite dimensional
topological vector spaces, to appear.

[22] R. Mifflin, An algorithm for nonsmooth optimization, to appear.

23 B. S. Morduhovic, to appear.
b

f24] B. H. Pourciau, Analysis and optimization of Lipschitz continuous

mappings, J. Optimization Theory Appl., to appear.

[25] B. N. Pshenichnyi, Necessary Conditions for an Extremum,

Marcel Dekker, N.Y. (1971).

[26] R. T. Rockafellar, Conjugate Duality and Optimization, SIAM

Publications, Philadelphia (1974).

[27] T. H. Sweetser, A minimal set-valued strong derivative for
vector valued Lipschitz functions, to appear.

[28] L. Thibault, Quelques propriétés des sous-differentiels de
fonctions réelles localement lipschitziennes définies sur un
espace de Banach séparable, Comptes Rendus Acad. Sci. Paris,
282(1976), 507-510.

[29] J. Warga, Derivate containers, inverse functions and control-

lability, in Calculus of Variations and Control Theory, (Edited

by D. L. Russell) Mathematics Research Center (University of

Wisconsin-Madison) Pub. No. 36, Academic Press, N.Y. (1976).

-30-




UNCILASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntered)
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
ORT NUM 2. GOVT ACCES : el
A\ TITLE (and Subtitle) 4 18 TveeoF REPOAT & PERIOD COVERED
oyt s Ty i ummary Re !
"¢ V generaLizep GRADIENTS OF LIPSCHITZ [ P i me . b
\\,j UNC TIONALS, { o & PERFORMING ORG. REPORT NUMBER |
= weghi ) |
7 Au THOR(a) 0 CONT‘RA_CY OR GRANT NuuaER(-) ‘E
] ) Frank H gllarke / ‘/:/Q,,U a—— _MC_Z_LG £¢ J
e PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Mathematics Research Center, University of o S
610 Walnut Street Wisconsin
Madison, Wisconsin 53706 LY
11. CONTROLLING OFPICE NAME AND ADDRESS 4 ) F 4 RERQ ONTE =
U. S. Army Research Office w Octeber Q76 )
P.O. Box 122l Bars =~ vy
Research Triangle Park, North Carolina 27709 30
[T woniToRiING AG \ai% WME & Aoousn(u different from Connollln‘ Office) | 15. SECURITY CLASS. (of this report)
v f UNCLASSIFIED
:,‘ /“ f J 15a. DECL ASSIFICATION/DOWNGRADING
v[/a SCHEDULE

. DISTRIBUTION STATEMENT (of thie Report)

Approved for publ : g /
{1/ /7 0/ ik ]
(17 MAHC - 7 S - 7 / )

DISTRIBUTION SYATMT

3

SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if neceesary and identify by block number)

Locally Lipschitz functions, subdifferential, generalized derivatives,
generalized gradients.

20. Al}TRACY (Continue on reverse eide If necessary and identify by dlock number)

he purpose of this article is threefold: (i) to present in a unified fashion
the theory of generalized gradients, whose elements are at present scattered in
various sources; (i1) to give an account of the ways in which the theory has been
applied; (iii) to prove new results concerning generalized gradients of summation /.(//ﬁ'/"'y/
functionals, pointwise maxima, and integral functionals on subspaces ofy L°°’

DD , 5% 1473  €oiTion oF 1 NOV 68 1S OBSOLETE UNCLASSIFIED {)// /0/0 Z; /é

. - — PTTR i i bbbl _.ﬂ...m.J




